Skip to content

Electricalterminology

Best Blog for Basic Electrical Knowledge

Primary Menu
  • Electric
  • Manufacturers & Brands
  • Electronics
  • About Us
  • Contact
  • Affiliate Disclosure
  • Home
  • Electronics
  • Understanding the Various Purposes of a Resistor in Circuits
  • Electronics

Understanding the Various Purposes of a Resistor in Circuits

electricalterminology 1 year ago
Purpose of resistor

A resistor is a fundamental component in electronic circuits, serving a variety of purposes that are essential to the proper functioning of the circuit.

Purposes of Resistor

Common purposes of a resistor are:

1. Voltage division

Voltage dividers can be designed using resistors. The resistors dissipate some power in doing this job, but the resulting voltages are needed for the proper biasing of electronic transistors or vacuum tubes. This ensures that an amplifier or oscillator will do its job in the most efficient, reliable possible way.

2. Biasing

In order to work efficiently, transistors or tubes need the right bias. This means that the control electrode—the base, gate, or grid—must have a certain voltage or current. Networks of resistors accomplish this. Different bias levels are needed for different types of circuits. A radio-transmitting amplifier would usually be biased differently than an oscillator or a low-level receiving amplifier. Sometimes voltage division is required for biasing. Other times it isn’t necessary. The figure shows a transistor whose base is biased using a pair of resistors in a voltage-dividing configuration.

Biasing

3. Current limiting

Resistors interfere with the flow of electrons in a circuit. Sometimes this is essential to prevent damage to a component or circuit. A good example is a receiving amplifier. A resistor can keep the transistor from using up a lot of power just to get hot. Without resistors to limit or control the current, the transistor might be overstressed carrying a direct current that doesn’t contribute to the signal. An improperly designed amplifier might need to have its transistor replaced often, because a resistor wasn’t included in the design where it was needed, or because the resistor isn’t the right size. The figure shows a current-limiting resistor connected in series with a transistor. Usually, it is in the emitter circuit as shown in this diagram, but it can also be in the collector circuit.

Current limiting

4. Power dissipation

Dissipating power as heat is not always bad. Sometimes a resistor can be used as a “dummy” component so that a circuit “sees” the resistor as if it were something more complicated. In radio, for example, a resistor can be used to take the place of an antenna. A transmitter can then be tested in such a way that it doesn’t interfere with signals on the airwaves. The transmitter output heats the resistor, without radiating any signal. But as far as the transmitter “knows,” it’s hooked up to a real antenna.

Another case in which power dissipation is useful is at the input of a power amplifier. Sometimes the circuit driving the amplifier (supplying its input signal) has too much power for the amplifier input. A resistor, or network of resistors, can dissipate this excess so that the power amplifier doesn’t get too much drive.

Power dissipation

5. Bleeding off charge

In a high-voltage, direct-current (dc) power supply, capacitors are used to smooth out the fluctuations in the output. These capacitors acquire an electric charge, and they store it for a while. In some power supplies, these filter capacitors hold the full output voltage of the supply, say something like 750 V, even after the supply has been turned off, and even after it is unplugged from the wall outlet. If you attempt to repair such a power supply, you might get clobbered by this voltage. Bleeder resistors, connected across the filter capacitors, drain their stored charge so that servicing the supply is not dangerous.

Bleeding off charge

It’s always a good idea to short out all filter capacitors, using a screwdriver with an insulated handle, before working on a high-voltage dc power supply.

6. Impedance matching

A more subtle, more sophisticated use for resistors is in the coupling in a chain of amplifiers, or in the input and output circuits of amplifiers. In order to produce the greatest possible amplification, the impedances must agree between the output of a given amplifier and the input of the next. The same is true between the source of the signal and the input of an amplifier. Also, this applies between the output of the last amplifier in a chain, and the load, whether that load is a speaker, a headset, a FAX machine, or whatever.

Continue Reading

Previous: Learn the Functionality of SCR (Silicon-Controlled Rectifier)
Next: An Introduction to the Working Principle of a Fuse

Related Stories

Advantages of Transducers Advantages of Transducers for Optimal Measurement
  • Electronics

Advantages of Transducers for Optimal Measurement

electricalterminology 1 month ago
Advantages of Infrared Sensors Advantages of Infrared Sensors: Improved Accuracy and More
  • Electronics

Advantages of Infrared Sensors: Improved Accuracy and More

electricalterminology 1 month ago
VFD Faults Causes Prevention Techniques VFD Faults: Causes and Prevention Techniques
  • Electronics

VFD Faults: Causes and Prevention Techniques

electricalterminology 1 month ago
Advantages of PCB Advantages of PCB (Printed Circuit Board) in Electronics
  • Electronics

Advantages of PCB (Printed Circuit Board) in Electronics

electricalterminology 1 month ago
Diode Failures Causes Prevention Tips Diode Failures: Causes & Prevention Tips
  • Electronics

Diode Failures: Causes & Prevention Tips

electricalterminology 1 month ago
PLC Selection PLC Selection 101: Tips and Tricks for a Successful Choice
  • Electronics

PLC Selection 101: Tips and Tricks for a Successful Choice

electricalterminology 1 month ago

Posts List

Advantages of Transducers Advantages of Transducers for Optimal Measurement

Advantages of Transducers for Optimal Measurement

Advantages of Infrared Sensors Advantages of Infrared Sensors: Improved Accuracy and More

Advantages of Infrared Sensors: Improved Accuracy and More

VFD Faults Causes Prevention Techniques VFD Faults: Causes and Prevention Techniques

VFD Faults: Causes and Prevention Techniques

Advantages of PCB Advantages of PCB (Printed Circuit Board) in Electronics

Advantages of PCB (Printed Circuit Board) in Electronics

Diode Failures Causes Prevention Tips Diode Failures: Causes & Prevention Tips

Diode Failures: Causes & Prevention Tips

PLC Selection PLC Selection 101: Tips and Tricks for a Successful Choice

PLC Selection 101: Tips and Tricks for a Successful Choice

Categories

  • Electric
  • Electronics
  • Manufacturers & Brands
  • Uncategorized

Pages

  • About Us
  • Affiliate Disclosure
  • Contact

Recent Posts

  • Essential Guide to Arc Flash Relays and Protection
  • From A to Z: Dual Function Circuit Interrupters
  • Advantages of Transducers for Optimal Measurement
  • Advantages of Infrared Sensors: Improved Accuracy and More
  • Advantages and Disadvantages of Incandescent Lamps
Copyright © All rights reserved. | Magnitude by AF themes.